The Fe-Cu-Nb-Si-B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HRTEM) images show the coexistence of these two phases. It is found that Fe-Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mossbauer spectroscopy measurements show that the nanophase is the D0 3 -type Fe-Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe-Cu-Nb-Si-B nanocomposite are measured in the frequency range of 0.5 GHz-10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than −10 dB in a frequency band of 1.93 GHz-3.20 GHz.
KeywordsMossbauer spectroscopy, magnetic permeability, nanocrystalline alloys
Disciplines
Electrical and Computer Engineering | Electromagnetics and Photonics