With the advantages of its fast speed, effective and moderate controllable conditions, desulfurization of coal by microwave has become research focus in the field of clean coal technology. Coal is a homogeneous mixture which consists of various components with different dielectric properties, so their abilities to absorb microwaves are different, and the sulfur-containing components are better absorbers of microwave, which makes them can be selectively heated and reacted under microwave irradiation. There still remain controversies on the principle of microwave desulfurization at present, thermal effects or non-thermal effects. The point of thermal effects of microwave is mainly base on its characters of rapidly and selectly heating. While, in view of non-thermal effect, direct interactions between the microwave electromagnetic field and sulfur containing components are proposed. It is a fundamental problem to determine the dielectric properties of coal and the sulfur-containing components to reveal the interaction of microwave and sulfur-containing compounds. However, the test of dielectric property of coal is affected by many factors, which makes it difficult to measure dielectric properties accurately. In order to achieve better desulfurization effect, the researchers employ methods of adding chemical additives such as acid, alkali, oxidant, reductant, or changing the reaction atmosphere, or combining with other methods such as magnetic separation, ultrasonic and microorganism. Researchers in this field have also put forward several processes, and have obtained a number of patents. Obscurity of microwave desulfurization mechanism, uncertainties in qualitative and quantitative analysis of sulfur-containing functional groups in coal, and the lack of special microwave equipment have limited further development of microwave desulfurization technology.