Metallic coplanar microwave resonators are widely employed at room temperature, but their low-temperature performance has received little attention so far. We characterize compact copper coplanar resonators with multiple modes from 2.5 to 20 GHz at temperatures as low as 5 K. We investigate the influence of center conductor width (20 to 100 µm) and coupling gap size (10 to 50 µm), and we observe a strong increase of quality factor (Q) for wider center conductors, reaching values up to 470. The magnetic-field dependence of the resonators is weak, with a maximum change in Q of 3.5% for an applied field of 7 T. This makes these metallic resonators well suitable for magnetic resonance studies, as we document with electron spin resonance (ESR) measurements at multiple resonance frequencies.