We report on the anisotropic response, the charge and lattice dynamics of normal and chargeordered phases with horizontal stripes in single crystals of the organic conductor α-(BEDT-TTF)2I3 determined by dc resistivity, dielectric and optical spectroscopy. An overdamped Drude response and a small conductivity anisotropy observed in optics is consistent with a weakly temperature dependent dc conductivity and anisotropy at high temperatures. The splitting of the molecular vibrations ν27(Bu) evidences the abrupt onset of static charge order below TCO = 136 K. The drop of optical conductivity measured within the ab plane of the crystal is characterized by an isotropic gap that opens of approximately 75 meV with several phonons becoming pronounced below. Conversely, the dc conductivity anisotropy rises steeply, attaining at 50 K a value 25 times larger than at high temperatures. The dielectric response within this plane reveals two broad relaxation modes of strength ∆εLD ≈ 5000 and ∆εSD ≈ 400, centered at 1 kHz < νLD < 100 MHz and νSD ≈ 1 MHz. The anisotropy of the large-mode (LD) mean relaxation time closely follows the temperature behavior of the respective dc conductivity ratio. We argue that this phason-like excitation is best described as a long-wavelength excitation of a 2kF bond-charge density wave expected theoretically for layered quarter-filled electronic systems with horizontal stripes. Conversely, based on the theoretically expected ferroelectric-like nature of the charge-ordered phase, we associate the small-mode (SD) relaxation with the motion of domain-wall pairs, created at the interface between two types of domains, along the a and b axes. We also consider other possible theoretical interpretations and discuss their limitations.
Abstract-We report on terahertz frequency-domain spectroscopy (THz-FDS) experiments in which we measure charge carrier dynamics and excitations of thin-film superconducting systems at low temperatures in the THz spectral range. The characteristics of the set-up and the experimental procedures are described comprehensively. We discuss the single-particle density of states and a theory of electrodynamic absorption and optical conductivity of conventional superconductors. We present the experimental performance of the setup at low temperatures for a broad spectral range from 3 to 38 cm -1 (0.1 -1.1 THz) by the example of ultra-thin films of weakly disordered superconductors niobium nitride (NbN) and tantalum nitride (TaN) with different values of critical temperatures Tc. Furthermore, we analyze and interpret our experimental data within the framework of conventional Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. By and large, we find the properties of our NbN and TaN thin films to be well described by the theory. Our results on NbN resemble tendencies towards anomalous behavior of the ratio 2∆(0)/kBTc as a function of Tc.Index Terms-Frequency-domain THz spectroscopy, superconducting thin films, BCS theory, density of states of a superconductor, optical conductivity of superconductors, superconductorinsulator transition, TaN, NbN.
Investigating solids with light gives direct access to charge dynamics, electronic and magnetic excitations. For heavy fermions, one has to adjust the frequency of the probing light to the small characteristic energy scales, leading to spectroscopy with microwaves. We review general concepts of the frequency-dependent conductivity of heavy fermions, including the slow Drude relaxation and the transition to a superconducting state, which we also demonstrate with experimental data taken on UPd 2 Al 3 . We discuss the optical response of a Fermi liquid and how it might be observed in heavy fermions. Microwave studies with focus on quantum criticality in heavy fermions concern the charge response, but also the magnetic moments can be addressed via electron spin resonance (ESR). We discuss the case of YbRh 2 Si 2 , the open questions concerning ESR of heavy fermions, and how these might be addressed in the future. This includes an overview of the presently available experimental techniques for microwave studies on heavy fermions, with a focus on broadband studies using the Corbino approach and on planar superconducting resonators.
The charge response of a charge-ordered state in the organic conductor α-(BEDT-TTF)2I3 is characterized by dc resistivity, dielectric and optical spectroscopy in different crystallographic directions within the two-dimensional conduction layer. Two dielectric modes are detected. The large mode is related to the phasonlike excitation of the 2k(F) bond-charge density wave which forms in the ab plane. The small dielectric mode is associated with the motion of domain-wall pairs along the a and b axes between two types of domains which are created due to inversion symmetry breaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.