“…Although slip rates of active faults are very low (on the order of 0.1 mm/yr, see above) some active fault systems are known to be able to host rare but significant earthquakes such as the Rhine Graben Faults (both borders and internal basin faults), some western Alps faults (Higher Durance, Belledone), Frontal external Alps or Pyrenees faults (North Pyrenean zone, MDF and western Provence E-trending thrusts). In old Paleozoic rocks, some major crustal faults (long and rooted) are also prone to rarely produce significant earthquakes such as the frontal zone of Hercynian orogeny [North Artois-shear zone: Jomard et al, 2017, García-Moreno et al, 2019 probably associated with the M w ∼ 6, earthquake of 1580, or the Sillon Houiller Fault zone in western Massif Central (several hundred km long, see location on Figure 2), or the South Armorican shear zone in Brittany, where no paleoseismic evidence has been found although some Quaternary deformations have been mentioned [Baize et al, 2002, Kaub, 2019, and one of the strongest historical earthquake reported in metropolitan France (1799 Bouin earthquake, M w ∼ 6, see location on Figure 2).…”