Background: Choosing the appropriate time to depart for spring migration is crucial to achieving a successful subsequent breeding season among migratory bird species. We expected Eurasian Curlews (Numenius arquata) to start their migration during favourable weather conditions and to adjust their flight heights to prevailing wind conditions.Methods: We equipped 23 curlews with Global Positioning System data loggers to record the spatio-temporal patterns of their departure from and arrival at their wintering site in the Wadden Sea, as well as the first part of their migration. We obtained data for 42 curlew migrations over a period of 6 years. Departure and arrival dates were related to 73 meteorological and bird-related predictors using the least absolute shrinkage and selection operator (LASSO) to identify drivers of departure and arrival decisions.Results: Curlews migrated almost exclusively to the western part of Russia for breeding. They left the Wadden Sea mainly during the evening hours from mid- to late April and returned between the end of June and mid-July. There was no difference in departure times between the sexes, but males tended to return from their breeding sites later than females. Flight speeds of the birds increased significantly with increasing tailwind component, suggesting that they timed their migration according to favourable wind conditions. However, curlews left the Wadden Sea during various wind and weather conditions, with significant numbers leaving during headwind conditions, in contrast to the apparent wind-driven start of migration. Curlews migrated at very low altitudes during tailwind conditions, but flew significantly higher during headwind conditions, at altitudes of up to several kilometres. Departure dates varied by <4 days in individual curlews that were tagged over consecutive years. Conclusions: Our results suggest that the start of migration in a long-distance migrant mainly depends on the date and is independent of weather conditions. Given the high repeatability of the departure day among subsequent years, this clearly suggests the existence of an internal clock prompting the start of migration. Further insights into the timing of migration in immatures and closely related birds might help us to understand the genetic mechanisms triggering temporal migration patterns.