The changing of the nuclear shells for light, neutron-rich nuclei, and the single-particle nature of 26 Na, has been explored by studying 25 Na(d, p) 26 Na in inverse kinematics, using a beam of 25 Na ions at 5 MeV per nucleon, provided by the ISAC-II facility at TRIUMF, Vancouver. Charged particles were detected with a highly-segmented silicon array that surrounded the 0.5 mg/cm 2 (CD 2 ) n target. Gamma rays from the recoiling 26 Na nucleus were detected using eight Compton-suppressed HPGe clover detectors. Recoil tagging was provided by an in-beam scintillation foil, downstream of the germanium array. A novel technique of utilising pγ-and pγγ-gating to extract proton angular distributions from states populated close in energy was employed with success. New states in 26 Na that are populated directly have been identified, using γ-decay patterns. Shell model calculations for comparison to experimental results are ongoing, using different model bases.