ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
AbstractAsh deposition such as slagging and fouling on boiler tube surfaces is an inevitable, though undesirable consequence of burning solid fuels in boilers. The role of fuel characteristics, in affecting the form and severity of the problem, is significant. In recent years, biomass fuels have gained increasing popularity as an environmentally friendly source of energy in power plants all over the world. This study is based on characterising the fusion behaviour of four biomass fuels (pine wood, peanut shells, sunflower stalk and miscanthus) using ash fusion temperature (AFT) tests, simultaneous thermal analysis (STA) of fuel ashes, calculation of empirical indices and predicting ash melting behaviour with the help of thermodynamic equilibrium calculations. The AFT results failed to show any clear trend between fusion temperature and high alkali content of biomass. STA proved useful in predicting the different changes occurring in the ash. Empirical indices predicted high slagging and fouling hazards for nearly all the biomass samples and this was supported by the possible existence of a melt phase at low temperatures as predicted by thermodynamic calculations.