In recent years, Carbon Capture and Storage (Sequestration) (CCS) has been proposed as a potential method to allow the continued use of fossil-fuelled power stations whilst preventing emissions of CO 2 from reaching the atmosphere. Gas, coal (and biomass)-fired power stations can respond to changes in demand more readily than many other sources of electricity production, hence the importance of retaining them as an option in the energy mix. Here, we review the leading CO 2 capture technologies, available in the short and long term, and their technological maturity, before discussing CO 2 transport and storage. Current pilot plants and demonstrations are highlighted, as is the importance of optimising the CCS system as a whole. Other topics briefly discussed include the viability of both the capture of CO 2 from the air and CO 2 reutilisation as climate change mitigation strategies. Finally, we discuss the economic and legal aspects of CCS.
Biomass is one of the important renewable energy sources. Biomass fuels exhibit a range of chemical and physical properties, particularly size and shape. Investigations of the behavior of a single biomass particle are fundamental to all practical applications, including both packed and fluidized-bed combustion, as well as suspended and pulverized fuel (pf) combustion. In this paper, both experimental and mathematical modeling approaches are employed to study the combustion characteristics of a single biomass particle ranging in size from 10 µm to 20 mm. Different subprocesses such as moisture evaporation, devolatilization, tar cracking, gas-phase reactions, and char gasification are examined. The sensitivity to the variation in model parameters, especially the particle size and heating rates, is investigated. The results obtained from this study are useful in assessing different combustion systems using biomass as a fuel. It helps to clarify the situations where the thermally thin and thermally thick cases interface. It is clear that simple models of particle combustion assuming constant particle temperature are sometimes inadequate and that for large particles a more detailed mathematical representation should be applied.
Carbonaceous soot has been generated from pine in a range of appliances to simulate different combustion conditions. The fuel as well as biomass cell wall components have been studied by pyrolysis-GC-MS and pyrolysis-GC-TCD. In addition, the soots have been probed using both pyrolysis-GC-MS and direct inlet mass spectrometry (DI-MS). The material collected from the pine combustion is smoke, and the major component is a carbonaceous soot. The soots contain both organic carbon (adsorbed species) and black (solid) soot, and the organic carbon consists of primary pyrolysis products from the cell wall components, as well as decomposition products, PAH and oxidized PAH. The black carbon contains oxygen functionality (of the order of 5-10 wt % O), and there are indications that this is incorporated during soot growth, although surface oxidation on reactive sites could also be important. The decomposition products suggest an important additional PAH route is via cyclopentadiene, which is derived after cracking of lignin monomer fragments. Kinetic modeling also highlights the lignin monomers as important contributions to the soot production pathways. A model is proposed which, in addition to the hydrogen abstraction carbon addition (HACA) mechanism, incorporates the cyclopentadiene and the O-PAH addition routes to soot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.