Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Simao Basin is one of the most important Mesozoic salt basins in China, and the salt rocks generally contain mud-clast conglomerates. The characteristics of mud-clast conglomerates can provide effective information indicating the evolution process of the salt deposits. A combined analysis of trace elements and clay minerals was performed to characterize the genetic model of mud-clast conglomerates in the salt rocks. The results show that the sedimentary materials are felsic rocks from the Upper Crust. Ternary plot diagrams show that the tectonic settings are between the continental margin and the continental island arc. The clay minerals in the samples mainly contain illite and illite–smectite mixed layers. A dry and hot climate prevailed during the deposition of the Mengyejing Formation, and the warm-humid climate that also occurred is interspersed in some periods. Evaporation makes the water bodies shallower, and the concentrated brine starts to precipitate salt under the arid and hot climate conditions. Redox proxies indicate that most of the samples were deposited in relatively oxic conditions. The Sr/Ba ratios (average of 0.5) and paleosalinity (average of ∼35‰) during the depositional period indicate an increase in terrigenous freshwater input and carry of clasts into the evaporation basin. Furthermore, the freshwater supply enhances the hydrodynamics; as a result, the detritus that deposited in the early stage is broken into mud-clast conglomerates and co-deposited with the salt rocks. The results provide a geochemical basis for further study of mud-clast conglomerates in the Simao Basin and supply recommendations for the origin of salt deposits in similar basins around the world.
The Simao Basin is one of the most important Mesozoic salt basins in China, and the salt rocks generally contain mud-clast conglomerates. The characteristics of mud-clast conglomerates can provide effective information indicating the evolution process of the salt deposits. A combined analysis of trace elements and clay minerals was performed to characterize the genetic model of mud-clast conglomerates in the salt rocks. The results show that the sedimentary materials are felsic rocks from the Upper Crust. Ternary plot diagrams show that the tectonic settings are between the continental margin and the continental island arc. The clay minerals in the samples mainly contain illite and illite–smectite mixed layers. A dry and hot climate prevailed during the deposition of the Mengyejing Formation, and the warm-humid climate that also occurred is interspersed in some periods. Evaporation makes the water bodies shallower, and the concentrated brine starts to precipitate salt under the arid and hot climate conditions. Redox proxies indicate that most of the samples were deposited in relatively oxic conditions. The Sr/Ba ratios (average of 0.5) and paleosalinity (average of ∼35‰) during the depositional period indicate an increase in terrigenous freshwater input and carry of clasts into the evaporation basin. Furthermore, the freshwater supply enhances the hydrodynamics; as a result, the detritus that deposited in the early stage is broken into mud-clast conglomerates and co-deposited with the salt rocks. The results provide a geochemical basis for further study of mud-clast conglomerates in the Simao Basin and supply recommendations for the origin of salt deposits in similar basins around the world.
Mighan playa is a closed intracontinental watershed and located 15 kilometers northeast of Arak city. The playa water level is affected by the sodium sulfate company's effluent, the purified wastewater plant, underground water, precipitation and evaporation. Mighan playa consists of two parts of island in the center and a lake in the periphery and is the most important pole of sodium sulfate extraction in Iran. In order to study brine and its evolution, 25 samples were taken from the playa, and it determined EC, TH, pH, Ca, Mg, K, Na, Cl, SO4, Br, I, Li, HCO3, NO3 and PO4. The inlet water shows the molar ratio of HCO3 < < Ca + Mg and the diagram of the geochemical evolution of Mighan brine follows the geochemical path (II), so the type of Mighan brine is Na-Cl-SO4, which authorized with Piper diagram. Also, according to the results of saturation indexes, Mighan brine has the possibility of forming evaporite deposits such as glauberite, mirablite, thenardite, halite, gypsum, calcite and small extent dolomite, anhydrite. The most important and effective mineralization factors were identified by factor analysis and factorial fuzzy maps. The salinity of Mighan playa brines is related to anions and cations that originate from the gypsum and salt layers in the northern part. Alkalinity and bicarbonate resulting from the dissolution of limestone rocks in the southern layers of the Mighan watershed.
This paper investigates the flow performance and mechanical properties of underground gelled filling materials made from potash mine tailings, using lime as a gel. It demonstrates the feasibility of using lime as a gel, potash mine tailings as aggregate, and replacing water with potash mine tailings to create filling materials that meet design requirements for flow and compressive strength. The role of lime in the hardening process is explored through X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and infrared analysis. Results show that hydration products vary with lime dosage. With 9% lime (L9), the products are primarily ghiaraite (CaCl2·4H2O) and carnallite (KMgCl3·6H2O); with 5% lime (L5), tachyhydrite (CaMg2Cl6·12H2O) predominates, along with minor amounts of antarcticite (CaCl2·6H2O) and korshunovskite (Mg2Cl(OH)3·4H2O); and with 2.6% lime (L2.6), the products include tachyhydrite, ghiaraite, bischofite (MgCl2·6H2O), and korshunovskite. These hydration products form a dense, interwoven structure, enhancing the strength of the filling material. This study offers a theoretical foundation for using lime gel as a filling material in potash mining, with significant implications for sustainable mining practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.