A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology.
The existence of males and females, which are often strikingly different in morphology, reproductive strategies and behavior, is one of the most widespread phenomena in biology. However, the genetic mechanisms that generate this ubiquitous pattern are surprisingly diverse and do not follow a phylogenetic pattern. Sex-determination mechanisms can differ between even closely related species and arise frequently and independently. Fish provide a paradigmatic example, as their sex-determination mechanisms range from environmental to different modes of genetic determination. The evolutionary meaning of this remarkable plasticity is unknown. For genetic sex determination, where the trigger for female or male development comes from the genetic constitution of the individual, the evolution of sex-determination mechanisms is connected to a very peculiar genomic process, namely the formation of sex chromosomes [1][2][3][4] .To improve understanding of the function and evolution of sex chromosomes, their genetic organization must be deciphered.However, owing to their degenerate nature and high repetitive DNA content, sex chromosomes pose almost insurmountable problems in deciphering their gene content and organization. So far, only the human 5 , chimpanzee 6 and rhesus macaque Y chromosomes 7 and the male-specific region on the Y chromosome of one fish, the medaka 8 , have been sequenced. These analyses have nevertheless provided important insights into the evolution of Y chromosomes, their genomic organization and their degeneration processes, as well as predictions as to their likely evolutionary fate 9-12 .Much less genomic information exists on W chromosomes because, as with Y chromosomes, they are predominantly highly repetitive in nature. The prevailing theory of the evolution of sex chromosomes predicts that degeneration of the heterogametic sex chromosome is a stepwise process that occurs over an extended period of time. We therefore reasoned that an evolutionarily young W chromosome Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle Genetic sex determination by W and Z chromosomes has developed independently in different groups of organisms. To better understand the evolution of sex chromosomes and the plasticity of sex-determination mechanisms, we sequenced the whole genomes of a male (ZZ) and a female (ZW) half-smooth tongue sole (Cynoglossus semilaevis). In addition to insights into adaptation to a benthic lifestyle, we find that the sex chromosomes of these fish are derived from the same ancestral vertebrate protochromosome as the avian W and Z chromosomes. Notably, the same gene on the Z chromosome, dmrt1, which is the male-determining gene in birds, showed convergent evolution of features that are compatible with a similar function in tongue sole. Comparison of the relatively young tongue sole sex chromosomes with those of mammals and birds identified events that occurred during the early phase of sex-chromosome evolution. Pertinent to...
With an annual production of >10 million t (Mt), China is the largest producer of cultivated shellfish and seaweeds in the world. Through mariculture of shellfish and seaweeds, it is estimated that 3.79 ± 0.37 Mt C yr -1 are being taken up, and 1.20 ± 0.11 Mt C yr -1 are being removed from the coastal ecosystem by harvesting (means ± SD). These estimates are based on carbon content data of both shellfish and seaweeds and annual production data from 1999 to 2008. The result illustrates that cultivated shellfish and seaweeds can indirectly and directly take up a significant volume of coastal ocean carbon -shellfish accomplish this by removal of phytoplankton and particulate organic matter through filter feeding, and seaweeds through photosynthesis. Thus, cultivation of seaweeds and shellfish plays an important role in carbon fixation, and therefore contributes to improving the capacity of coastal ecosystems to absorb atmospheric CO 2 . Because the relationship between mariculture and the carbon cycle of the coastal ecosystem is complicated and the interaction between the 2 processes is significant, such studies should be continued and given high priority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.