2020
DOI: 10.48550/arxiv.2006.01710
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Minimal model-universal flows for locally compact Polish groups

Abstract: Let G be a locally compact Polish group. A metrizable G-flow Y is called model-universal if by considering the various invariant probability measures on Y, we can recover every free action of G on a standard Lebesgue space up to isomorphism. Weiss has shown that for countable G, there exists a minimal, model-universal flow. In this paper, we extend this result to all locally compact Polish groups.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?