Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering 2016
DOI: 10.1145/2950290.2950342
|View full text |Cite
|
Sign up to set email alerts
|

Minimizing GUI event traces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
16
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
5
3
1

Relationship

2
7

Authors

Journals

citations
Cited by 39 publications
(16 citation statements)
references
References 27 publications
0
16
0
Order By: Relevance
“…There have been several recent successes in applying (supervised) machine learning to programming languages research. For example, machine learning has been used to infer program invariants [Padhi et al 2016;, improve program analysis [Liang et al 2011;Mangal et al 2015;Raghothaman et al 2018;Raychev et al 2015] and synthesis [Balog et al 2016;Feng et al 2018Kalyan et al 2018;Lee et al 2018;Raychev et al 2016b;Schkufza et al 2013Schkufza et al , 2014, build probabilistic models of code [Bielik et al 2016;Raychev et al 2016aRaychev et al , 2014, infer specifications [Bastani et al 2017[Bastani et al , 2018bBeckman and Nori 2011;Bielik et al 2017;Heule et al 2016;Kremenek et al 2006;Livshits et al 2009], test software [Clapp et al 2016;Godefroid et al 2017;Liblit et al 2005], and select lemmas for automated Proof. First, because transitions are deterministic, we have…”
Section: Related Workmentioning
confidence: 99%
“…There have been several recent successes in applying (supervised) machine learning to programming languages research. For example, machine learning has been used to infer program invariants [Padhi et al 2016;, improve program analysis [Liang et al 2011;Mangal et al 2015;Raghothaman et al 2018;Raychev et al 2015] and synthesis [Balog et al 2016;Feng et al 2018Kalyan et al 2018;Lee et al 2018;Raychev et al 2016b;Schkufza et al 2013Schkufza et al , 2014, build probabilistic models of code [Bielik et al 2016;Raychev et al 2016aRaychev et al , 2014, infer specifications [Bastani et al 2017[Bastani et al , 2018bBeckman and Nori 2011;Bielik et al 2017;Heule et al 2016;Kremenek et al 2006;Livshits et al 2009], test software [Clapp et al 2016;Godefroid et al 2017;Liblit et al 2005], and select lemmas for automated Proof. First, because transitions are deterministic, we have…”
Section: Related Workmentioning
confidence: 99%
“…There is a large body of work on automatically testing Android applications at the level of the UI. Fully automated testing approaches include random and search-directed event generation tools [12,27,35,38,40,52,63], model-based exploration [1,2,6,10,31,43,49,62], concolic testing [3], and event generation using evolutionary algorithms [39].…”
Section: Related Workmentioning
confidence: 99%
“…The state-of-the-practice technique such as Monkey [95] generates pseudo-random streams of UI and system events. However, it usually generates many redundant [113] and irrelevant events [114] which do not consider current app state. So, other approaches have been proposed to systematically explore app GUIs, and generate relevant inputs.…”
Section: Aimdroidmentioning
confidence: 99%