Background: The SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a family of plant-specific transcription factors that contain a conservative SBP domain. SPL proteins play important roles in plant growth and development, such as plant architecture, flowering regulation, and grain yield. However, the systematic analysis of TaSPL gene family in wheat is lacking.Results: In this study, 56 TaSPL genes were identified from wheat genome and divided into eight groups (G1-G8), according to the phylogenetic analysis of TaSPL proteins among numbers of plant species. Bioinformatics method were applied to analyse the gene structure, motif, chromosome localization, segmental duplication and synteny of total TaSPL genes and the results showed that their characteristics were different among group in the exon-intron constitution, conserved and specific motif. The expansion and evolution of the TaSPL genes occurred within the wheat genome. Total 28 of 56 TaSPL genes were predicted to be putative targets for miR156, which revealed the importance of miR156-mediated regulation in wheat. Moreover, transcript level analysis of TaSPL genes in wheat tissues by qRT-PCR discovered the diversified spatiotemporal expression patterns, based on the comparison with reference RNA-seq data. Some TaSPL genes were subject to various stress treatments including drought and hormones, etc. suggesting that these part genes probably involved in responding to hormone signals during different wheat development stages. Conclusions: Our findings show that TaSPL genes may regulate the development of spike and grain, resistance to abiotic stresses, and involve in responding to hormone signals. These results could provide a fundamentally information to further study of the functions of TaSPL genes in wheat growth and development.