Ram semen traits play a significant role in conception outcomes, which in turn may influence reproductive efficiency and the overall productivity and profitability of sheep enterprises. Since hundreds of ewes may be inseminated from a single ejaculate, it is important to evaluate semen quality prior to use in sheep breeding programs. Given that semen traits have been found to be heritable, genetic variation likely contributes to the variability observed in these traits. Identifying such genetic variants could provide novel insights into the molecular mechanisms underlying variability in semen traits. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with semen traits in Merino sheep. A genome-wide association study (GWAS) was undertaken using 4506 semen collection records from 246 Merino rams collected between January 2002 and May 2021. The R package RepeatABEL was used to perform a GWAS for semen volume, gross motility, concentration, and percent post-thaw motility. A total of 35 QTLs, located on 16 Ovis aries autosomes (OARs), were significantly associated with either of the four semen traits in this study. A total of 89, 95, 33, and 73 candidate genes were identified, via modified Bonferroni, within the QTLs significantly associated with volume, gross motility, concentration, and percent post-thaw motility, respectively. Among the candidate genes identified, SORD, SH2B1, and NT5E have been previously described to significantly influence spermatogenesis, spermatozoal motility, and high percent post-thaw motility, respectively. Several candidate genes identified could potentially influence ram semen traits based on existing evidence in the literature. As such, validation of these putative candidates may offer the potential to develop future strategies to improve sheep reproductive efficiency. Furthermore, Merino ram semen traits are lowly heritable (0.071–0.139), and thus may be improved by selective breeding.