The recent remarkable development of transcriptomics technologies, especially next generation sequencing technologies, allows deeper exploration of the hidden landscapes of complex traits and creates great opportunities to improve livestock productivity and welfare. Non-coding RNAs (ncRNAs), RNA molecules that are not translated into proteins, are key transcriptional regulators of health and production traits, thus, transcriptomics analyses of ncRNAs are important for a beter understanding of the regulatory architecture of livestock phenotypes. In this chapter, we present an overview of common frameworks for generating and processing RNA sequence data to obtain ncRNA transcripts. Then, we review common approaches for analyzing ncRNA transcriptome data and present current state of the art methods for identiication of ncRNAs and functional inference of identiied ncRNAs, with emphasis on tools for livestock species. We also discuss future challenges and perspectives for ncRNA transcriptome data analysis in livestock species.