In this paper, atomistic molecular dynamics simulations
are performed
for the systems consisting of functionalized gold nanoparticles (NPs)
in a toluene medium. Gold NPs are coated with ligand molecules that
have different terminal groups, that is, polar carboxyl (COOH), hydroxyl
(OH), amine (NH
2
), and nonpolar methyl (CH
3
).
These functional groups are selected to understand the relation between
the aggregation behavior of functionalized gold NPs in toluene and
the polarity of terminal groups of ligand molecules. The center-of-mass
distances between NP pairs, the radial distribution functions, the
mean square displacements, the radius of gyration, and the number
of hydrogen bonds (H-bond) between ligand molecules are computed.
Our simulation results indicate that functionalized gold NPs exhibit
different aggregation/dispersion behaviors depending upon the terminal
group of ligands.