In this paper, atomistic molecular dynamics simulations
are performed
for the systems consisting of functionalized gold nanoparticles (NPs)
in a toluene medium. Gold NPs are coated with ligand molecules that
have different terminal groups, that is, polar carboxyl (COOH), hydroxyl
(OH), amine (NH
2
), and nonpolar methyl (CH
3
).
These functional groups are selected to understand the relation between
the aggregation behavior of functionalized gold NPs in toluene and
the polarity of terminal groups of ligand molecules. The center-of-mass
distances between NP pairs, the radial distribution functions, the
mean square displacements, the radius of gyration, and the number
of hydrogen bonds (H-bond) between ligand molecules are computed.
Our simulation results indicate that functionalized gold NPs exhibit
different aggregation/dispersion behaviors depending upon the terminal
group of ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.