The objective of this study was targeted to synthesize and characterize a carbon nanotubes (CNTs) incorporated poly(methyl methacrylate) (PMMA)-based denture polymer. Two experimental denture base polymers were fabricated either by incorporating single-walled CNTs (SWCNTs) (SW-group) or multi-walled CNTs (MWCNTs) (MW-group). In both groups, 0.5 wt% of the CNTs were incorporated into MMA monomer. Using a commercially available heat-cured PMMA (Interacryl Hot, Interdent, Opekarniska, Slovenia), a polymer-to-monomer ratio of 3:1 was used to fabricate the specimens (14 × 14 × 3 mm3 in dimensions) of the control group (without CNTs) (C-group) and the experimental groups (either SWCNT–PMMA or MWCNT–PMMA) ( n = 30, N = 90). Physical, mechanical, thermal, and rheological attributes of the tested materials were assessed. The data were statistically analyzed using SPSS version 21.0 (SPSS®, Chicago, IL, USA) and results were explored with one-way ANOVA. Incorporation of CNTs changed the surface morphology and topography of the PMMA specimens. No thermal changes were observed among C-, SW-, and MW-groups. Conversely, the hardness, elastic modulus and wear resistance were improved in both SW-group and MW-group. Additionally, the dynamic mechanical analyzer showed improvement in storage modulus in SW-group, affirming the load transfer capability of SW–PMMA composite. The CNT–PMMA composite might favorably be used as a potential denture base polymer.