Electric vehicle (EV) charging infrastructure buildout is a major greenhouse gas (GHG) mitigation strategy among governments and municipalities. In the United States, where petroleum-based transportation is the largest single source of GHG emissions, the Infrastructure Investment and Jobs Act of 2021 will support building a national network of 500,000 EV charging units. While the climate benefits of driving electric are well established, the potential embodied climate impacts of building out the charging infrastructure are relatively unexplored. Furthermore, “charging infrastructure” tends to be conceptualized in terms of plugs and stations, leaving out the electrical and communications systems that will be required to support decarbonized and efficient charging. In this study, we present an EV Charging System (EVCS) model that describes the material and operational components required for charging and forecasts the scale-up of these components based on EV market share scenarios out to 2050. We develop a methodology for measuring GHG emissions embodied in the buildout of EVCS and incurred during operation of the EVCS, including vehicle recharging, and we demonstrate this model using a case study of Georgia (USA). We find that cumulative GHG emissions from EVCS buildout and use are negligible, at less than 1% of cumulative emissions from personal light duty vehicle travel (including EV recharging and conventional combustion vehicle driving). If an accelerated EVCS buildout were to stimulate a faster transition of the vehicle fleet, the emissions reduction of electrification will far outweigh emissions embodied in EVCS components, even assuming relatively high carbon inputs prior to decarbonization.