Our previous study revealed that the tumor suppressor/transcription factor p53 directly binds to its transcriptional target, p21, and that the p53/p21 complex binds to zinc finger protein SNAI2 (Slug), a tumor promoter/transcription factor; thereby promoting the degradation of Slug by Mdm2, an E3 ligase. The present study demonstrated that Slug reduced the cellular expression levels of p53 and p21 in HCT116 colon cancer by decreasing their protein stability. In parallel, Slug increased the mRNA and protein expression levels of Mdm2 in these cells. Moreover, knockdown of Mdm2 using specific small interfering RNAs abolished the ability of Slug to induce the degradation of p53 and p21. Considering the well-known function of Mdm2 in facilitating p53 and p21 degradation, these data suggested that Slug promoted p53 and p21 degradation by inducing Mdm2 expression. Moreover, Slug increased ubiquitination levels of p53 in HCT116 cells. This is consistent with the fact that Mdm2 induces p53 degradation by ubiquitinating p53, and further confirmed that Mdm2 acted downstream of Slug. Comparative studies using HCT116 cells and their p53-or p21-knockout variants have revealed that Slug requires p21 to induce p53 degradation. This result is consistent with our previous study, which revealed that Mdm2 acts more efficiently on p53 in the p53/p21 complex compared with on p53 alone. By contrast, Slug did not require p53 to induce p21 degradation, suggesting that p53 was dispensable in Mdm2-mediated p21 degradation. Notably, the ability of Slug to increase/decrease Mdm2/p53 and p21 levels, respectively, was not confined to HCT116 cells alone, but was also confirmed in A549 and H460 lung cancer cells. Collectively, the results of the present study suggested that Slug could counter p53 and p21. The balance between these two opposing groups (Slug vs. p53/p21) may depend on environmental stresses and the internal physiology of cells.