Convolutional neural networks (CNN) have provided great advances for the task of sign language recognition (SLR). However, recurrent neural networks (RNN) in the form of long–short-term memory (LSTM) have become a means for providing solutions to problems involving sequential data. This research proposes the development of a sign language translation system that converts Panamanian Sign Language (PSL) signs into text in Spanish using an LSTM model that, among many things, makes it possible to work with non-static signs (as sequential data). The deep learning model presented focuses on action detection, in this case, the execution of the signs. This involves processing in a precise manner the frames in which a sign language gesture is made. The proposal is a holistic solution that considers, in addition to the seeking of the hands of the speaker, the face and pose determinants. These were added due to the fact that when communicating through sign languages, other visual characteristics matter beyond hand gestures. For the training of this system, a data set of 330 videos (of 30 frames each) for five possible classes (different signs considered) was created. The model was tested having an accuracy of 98.8%, making this a valuable base system for effective communication between PSL users and Spanish speakers. In conclusion, this work provides an improvement of the state of the art for PSL–Spanish translation by using the possibilities of translatable signs via deep learning.