A systematic calculation for the transition form factors of heavy to light mesons (B, Bs, D, Ds→ π, K, η, ρ, K*, ω, ϕ) is carried out by using light-cone sum rules in the framework of heavy quark effective field theory. The heavy quark symmetry at the leading order of 1/mQexpansion enables us to reduce the independent wave functions and establish interesting relations among form factors. Some relations hold for the whole region of momentum transfer. The meson distribution amplitudes up to twist-4 including the contributions from higher conformal spin partial waves and light meson mass corrections are considered. The CKM matrix elements |Vub|, |Vcs| and |Vcd| are extracted from some relatively well-measured decay channels. A detailed prediction for the branching ratios of heavy to light meson decays is then presented. The resulting predictions for the semileptonic and radiative decay rates of heavy to light mesons (B, Bs, D, Ds→ π, K, η, ρ, K*, ω, ϕ) are found to be compatible with the current experimental data and can be tested by more precise experiments at B-factory, LHCb, BEPCII and CLEOc.