We introduce two types of thermodynamic refrigeration cycles obtained through modification of the Otto cycle refrigerator by a generalized measurement channel. These refrigerators are corresponding to the activation of the measurement-based stroke before (first type) and after (second type) the full thermalization of the cooling medium by the cold reservoir in the related familiar Otto cycle. We show that the coefficient of performance for the first type modified refrigerator increases linearly in terms of measurement strength parameter, beyond the classical cooling of the familiar Otto cycle refrigerator. The second type interestingly introduces an autonomous refrigerator whose supplying work is provided by a quantum engine induced by the measurement channel and operates simultaneously inside the modified cycle. By the considered measurement channel, we also establish such modifications on the swap refrigerator. It is observed that the thermodynamic properties of the obtained modified swap refrigerators are the same as of the modified Otto cycle ones respectively.