Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We propose a simple modification of the Goldberger-Wise mechanism for stabilizing the scale of spontaneously broken conformal theories. The source of explicit conformal symmetry breaking is a relevant operator with a small coefficient, as opposed to the usual mechanism of an almost marginal operator with an order-one coefficient. In the warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk scalar on the UV brane, which can be technically natural if it is the only source for the breaking of a symmetry (for example, a discrete Z2). This modification of the stabilization mechanism has significant consequences for the nature of the conformal phase transition, since the radion/dilaton potential is no longer shallow. The bounce action is significantly reduced, leading to a weaker first-order phase transition instead of the supercooled and strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to reduction of gravitational wave signals which, however, may still be observable at future detectors. We present numerical and analytical studies of the phase transition and the resulting gravitational wave signal strength, assuming that the effective dilaton potential provides a good leading approximation. While the dilaton is not expected to be generically light in this setup, in order to keep perturbative control over the effective theory one needs to mildly tune the dilaton quartic to be somewhat small.
We propose a simple modification of the Goldberger-Wise mechanism for stabilizing the scale of spontaneously broken conformal theories. The source of explicit conformal symmetry breaking is a relevant operator with a small coefficient, as opposed to the usual mechanism of an almost marginal operator with an order-one coefficient. In the warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk scalar on the UV brane, which can be technically natural if it is the only source for the breaking of a symmetry (for example, a discrete Z2). This modification of the stabilization mechanism has significant consequences for the nature of the conformal phase transition, since the radion/dilaton potential is no longer shallow. The bounce action is significantly reduced, leading to a weaker first-order phase transition instead of the supercooled and strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to reduction of gravitational wave signals which, however, may still be observable at future detectors. We present numerical and analytical studies of the phase transition and the resulting gravitational wave signal strength, assuming that the effective dilaton potential provides a good leading approximation. While the dilaton is not expected to be generically light in this setup, in order to keep perturbative control over the effective theory one needs to mildly tune the dilaton quartic to be somewhat small.
We consider an effective theory for a shift-symmetric, quadratically-coupled, ultralight spin-0 field. The leading CP conserving interactions with Standard Model fields in the effective theory arise at dimension 8. We discuss the renormalization group evolution and positivity bounds on these operators, as well as their possible UV origins. Assuming that the spin-0 field is associated with an ultralight dark matter candidate, we discuss the effects of the dimension-8 operators on experiments searching for the oscillation of fundamental constants and Lorentz violation. We find that the direct bounds on these two effects are of similar strength but rather weak, corresponding to a UV cutoff scale of keV order, as they are mediated by dimension-8 operators.
We introduce a model of dark matter (DM) where the DM is a composite of a spontaneously broken conformal field theory. The DM is a thermal relic with its abundance determined by the freeze-out of annihilations to dilatons, the Goldstone boson of broken conformal symmetry. If the dilaton is heavier than the DM this is an example of forbidden DM. We explore the phenomenology of this model in its 5D dual description, corresponding to a warped extra dimension with the Standard Model on the ultraviolet brane and the DM on the infrared brane. We find the model is compatible with theoretical and experimental constraints for DM masses in the 0.1–10 GeV range. The conformal phase transition is supercooled and strongly first-order. It can source large stochastic gravitational wave signals consistent with those recently observed at pulsar timing arrays like NANOGrav. The majority of the viable parameter space will be probed by future detectors designed to search for long-lived particles, including most of the region favored by the NANOGrav signal. The rest of the parameter space can be probed at future direct detection experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.