Observations of gravitational waves from neutron star mergers open up novel directions for exploring fundamental physics: they offer the first access to the structure of objects with a non-negligible contribution from vacuum energy to their total mass. The presence of such vacuum energy in the inner cores of neutron stars occurs in new QCD phases at large densities, with the vacuum energy appearing in the equation of state for a new phase. This in turn leads to a change in the internal structure of neutron stars and influences their tidal deformabilities which are measurable in the chirp signals of merging neutron stars. By considering three commonly used neutron star models we show that for large chirp masses the effect of vacuum energy on the tidal deformabilities can be sizable. Measurements of this sort have the potential to provide a first test of the gravitational properties of vacuum energy independent from the acceleration of the Universe, and to determine the size of QCD contributions to the vacuum energy.
The critical point for a Higgs sector can be a point of interest in the potential for a modulus field such as the radion of an extra dimensional construction, or the dilaton of spontaneously broken approximate conformal invariance. In part motivated by conjectures about the self-organized critical state in statistical physics, we construct a 5D model in which there is an infrared emergent Higgs instability due to violation of the Breitenlohner-Freedman bound deep in the interior of a near AdS geometry. This is holographically dual to a "running" scaling dimension transitioning from real to complex with decreasing scale. The complex scaling indicates an instability to be resolved by condensates which modify the interior geometry and backreact on the 5D radion potential. Studying the model at small gravitational backreaction, we find a rich possible vacuum structure and uncover evidence that resolution of the instability requires a non-trivial cosmology.
We systematically study the perturbative anomaly inflow by the bulk Chern-Simons (CS) theory in a slice of five-dimensional anti-de Sitter spacetime (AdS5). The introduction of UV and IR 3-branes makes the anomaly story remarkably rich and many interesting aspects can be obtained, including weakly gauging and spontaneous symmetry breaking of the global symmetries of the dual 4D CFT. Our main contribution is to provide a unified and comprehensive discussion of the subject, together with a detailed description of the dual CFT picture for each case. To this end, we employ a gauge-fixed effective action suitable for a holographic study, which allows us to incorporate general UV and IR boundary conditions (BCs). As part of the process, we reproduce many known results in the literature, such as ’t Hooft anomaly matching for unbroken symmetry (Neumann IR-BC) and (gauged) Wess-Zumino-Witten (WZW) action for broken symmetry (IR-BC breaks the bulk group G → H). In addition, we show that anomaly matching occurs for ABJ anomalies as well as ’t Hooft anomalies, which suggests anomalies inflowed from the bulk CS theory are necessarily free of mixed anomalies with the confining gauge force of the 4D dual CFT. In the case of broken symmetry, we prove that the “would-be” Goldstone bosons associated with the weakly gauged symmetry are completely removed by a proper field redefinition, provided the anomaly from the bulk is exactly cancelled by the boundary contribution, hence confirming the standard expectation. Moreover, we present a holographic formulation of Witten’s argument for the quantization condition for the WZW action, and argue in favor of an alternative way to obtain the same condition using a “deformed” theory (different BCs). We work out several examples, including a product group with mixed anomaly, and identify the corresponding dual CFT picture. We consider a fully general case typically arising in the context of dynamical electroweak symmetry breaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.