2020
DOI: 10.3934/mfc.2020016
|View full text |Cite
|
Sign up to set email alerts
|

Modal additive models with data-driven structure identification

Abstract: Additive models, due to their high flexibility, have received a great deal of attention in high dimensional regression analysis. Many efforts have been made on capturing interactions between predictive variables within additive models. However, typical approaches are designed based on conditional mean assumptions, which may fail to reveal the structure when data is contaminated by heavy-tailed noise. In this paper, we propose a penalized modal regression method, Modal Additive Models (MAM), based on a conditio… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance