We report nanosecond (ns) cavity-dumped operation of a low-cost diode-pumped Cr:LiSAF laser around 1000 nm. The system is pumped with one 1-W single-emitter multimode diode at 665 nm. A Pockell cell (PC) and thin-film-polarizer (TFP) combination placed inside the cavity chops up an adjustable portion of the intracavity power and creates a variable time-dependent output coupler. Via adjusting the length and magnitude of the electrical signal going into the PC, output pulses with pulsewidths in the 2.5–500 ns range and with peak power levels above 10 W are generated at repetition rates up to 100 kHz. The central wavelength of the pulses could be smoothly tuned in the 985–1030 nm region, and is only limited by the anti-reflection coating bandwidth of the current PC and TFP. This versatile nanosecond source with 100 nJ level energies could serve as an attractive low-cost seed source for Yb-based amplifiers, including the cryogenic Yb:YLF systems.