2023
DOI: 10.3390/s23146337
|View full text |Cite
|
Sign up to set email alerts
|

Model-Agnostic Structural Transfer Learning for Cross-Domain Autonomous Activity Recognition

Abstract: Activity recognition using data collected with smart devices such as mobile and wearable sensors has become a critical component of many emerging applications ranging from behavioral medicine to gaming. However, an unprecedented increase in the diversity of smart devices in the internet-of-things era has limited the adoption of activity recognition models for use across different devices. This lack of cross-domain adaptation is particularly notable across sensors of different modalities where the mapping of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 41 publications
0
0
0
Order By: Relevance