With 3D imaging of the multisonar beam and serious interference of image noise, detecting objects based only on manual operation is inefficient and also not conducive to data storage and maintenance. In this paper, a set of sonar image automatic detection technologies based on 3D imaging is developed to satisfy the actual requirements in sonar image detection. Firstly, preprocessing was conducted to alleviate the noise and then the approximate position of object was obtained by calculating the signal-to-noise ratio of each target. Secondly, the separation of water bodies and strata is realized by maximum variance between clusters (OTSU) since there exist obvious differences between these two areas. Thus image segmentation can be easily implemented on both. Finally, the feature extraction is carried out, and the multidimensional Bayesian classification model is established to do classification. Experimental results show that the sonar-image-detection technology can effectively detect the target and meet the requirements of practical applications.