In this paper we derive a multi-sensor multi-Bernoulli (MS-MeMBer) filter for multi-target tracking. Measurements from multiple sensors are employed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle filter implementations. Numerical simulations conducted for both linear-Gaussian and non-linear models highlight the improved accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multi-sensor cardinalized probability hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of detection. Index TermsRandom finite sets, multi-sensor multi-Bernoulli filter, multi-sensor and multi-target tracking. arXiv:1609.05108v4 [stat.ME]
International audienceIn this paper, we propose a novel phased-array track before detect (TBD) filter for tracking multiple distributed (extended) targets from impulsive observations. Since the targets are angularly spread, we track the centroid Direction Of Arrival (DOA) of the target-generated (or backscattered) signal. The main challenge stems from the random target signals that, conditional to their respective states, constitute non-deterministic contributions to the system observation. The novelty of our approach is twofold. First, we develop a Cardinalized Probability Hypothesis Density (CPHD) filter for tracking multiple targets with non-deterministic contributions, more specifically, Spherically Invariant RandomVector (SIRV) processes. This is achieved by analytically integrating the SIRV and angularly distributed target signals in the update step. Thus, ensuring a more efficient implementation than existing solutions, that generally consider augmenting the target state with the target signal. Secondly, we provide an improved auxiliary particle CPHD filter and clustering methodology. The auxiliary step is carried out for persistent particles, while for newly birthed particles an adaptive importance distribution is given. This is in contrast with existing solutions that only consider the auxiliary step for birthed particles. Simulated data results showcase the improved performance of the proposed filter. Results on real sonar phased-array data are presented for underwater 3D image reconstruction applications
This paper proposes an energy-efficient counting rule for distributed detection by ordering sensor transmissions in wireless sensor networks. In the counting rule-based detection in an N −sensor network, the local sensors transmit binary decisions to the fusion center, where the number of all N local-sensor detections are counted and compared to a threshold. In the ordering scheme, sensors transmit their unquantized statistics to the fusion center in a sequential manner; highly informative sensors enjoy higher priority for transmission. When sufficient evidence is collected at the fusion center for decision making, the transmissions from the sensors are stopped. The ordering scheme achieves the same error probability as the optimum unconstrained energy approach (which requires observations from all the N sensors) with far fewer sensor transmissions. The scheme proposed in this paper improves the energy efficiency of the counting rule detector by ordering the sensor transmissions: each sensor transmits at a time inversely proportional to a function of its observation. The resulting scheme combines the advantages offered by the counting rule (efficient utilization of the network's communication bandwidth, since the local decisions are transmitted in binary form to the fusion center) and ordering sensor transmissions (bandwidth efficiency, since the fusion center need not wait for all the N sensors to transmit their local decisions), thereby leading to significant energy savings. As a concrete example, the problem of target detection in large-scale wireless sensor networks is considered. Under certain conditions the ordering-based counting rule scheme achieves the same detection performance as that of the original counting rule detector with fewer than N/2 sensor transmissions; in some cases, the savings in transmission approaches (N − 1).
In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.