Clicking data, which exists in abundance and contains objective user preference information, is widely used to produce personalized recommendations in web-based applications. Current popular recommendation algorithms, typically based on matrix factorizations, often have high accuracy and achieve good clickthrough rates. However, diversity of the recommended items, which can greatly enhance user experiences, is often overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method, which augments clicking data into compatible full ranking vectors by enforcing all the clicked items to be top-ranked. User preferences are learned using a Mallows ranking model. Bayesian inference leads to interpretable uncertainties of each individual recommendation, and we also propose a method to make personalized recommendations based on such uncertainties. With a simulation study and a real life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes personalized recommendations with similar accuracy, while achieving much higher level of diversity, and producing interpretable and actionable uncertainty estimation.