2015
DOI: 10.1007/s00453-015-0030-x
|View full text |Cite
|
Sign up to set email alerts
|

Model Counting for CNF Formulas of Bounded Modular Treewidth

Abstract: The modular treewidth of a graph is its treewidth after the contraction of modules. Modular treewidth properly generalizes treewidth and is itself properly generalized by clique-width. We show that the number of satisfying assignments of a CNF formula whose incidence graph has bounded modular treewidth can be computed in polynomial time. This provides new tractable classes of formulas for which #SAT is polynomial. In particular, our result generalizes known results for the treewidth of incidence graphs and is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
46
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 26 publications
(48 citation statements)
references
References 29 publications
0
46
0
2
Order By: Relevance
“…Both problems become tractable under certain structural restrictions obtained by bounding width parameters of graphs associated with formulas (Fischer, Makowsky, & Ravve, 2008;Ganian, Hlinený, & Obdrzálek, 2013;Samer & Szeider, 2010;Szeider, 2003). The work we present here is inspired by recent results in the work of Paulusma, Slivovsky, and Szeider (2013) and also in the work of Slivovsky and Szeider (2013) showing that #SAT is solvable in polynomial time when the incidence graph 1 I(F ) of the input formula F has bounded modular treewidth, and more strongly, bounded symmetric clique-width.…”
Section: Introductionmentioning
confidence: 92%
See 1 more Smart Citation
“…Both problems become tractable under certain structural restrictions obtained by bounding width parameters of graphs associated with formulas (Fischer, Makowsky, & Ravve, 2008;Ganian, Hlinený, & Obdrzálek, 2013;Samer & Szeider, 2010;Szeider, 2003). The work we present here is inspired by recent results in the work of Paulusma, Slivovsky, and Szeider (2013) and also in the work of Slivovsky and Szeider (2013) showing that #SAT is solvable in polynomial time when the incidence graph 1 I(F ) of the input formula F has bounded modular treewidth, and more strongly, bounded symmetric clique-width.…”
Section: Introductionmentioning
confidence: 92%
“…Since we are not solving a graph theoretic problem, expressing runtime by a graph theoretic parameter may be a limitation. Therefore, our strategy will be to develop a framework based on the following strategy (A) consider, for #SAT or MaxSAT, the amount of information needed to combine solutions to subproblems into global solutions, then (B) define the notion of good decompositions based on a parameter that minimizes this information, and then (C) design a dynamic programming algorithm along such a decomposition with runtime expressed by this parameter Both in the work of Paulusma et al (2013) and in that of Slivovsky and Szeider (2013) two assignments are considered to be equivalent if they satisfy the same set of clauses. When carrying out (A) for #SAT and MaxSAT this led us to the concept of ps-value of a CNF formula.…”
Section: Introductionmentioning
confidence: 99%
“…From Theorem 2, we directly get lower bounds for the width measures studied in [30,35,16,38,34]. The first result considers the parameters with respect to which SAT is fixed-parameter tractable.…”
Section: Width Vs Communicationmentioning
confidence: 99%
“…Mientras que para creación del árbol, se recorre cada entrada en la tabla, lo que requiere también del orden operaciones básicas. Finalmente, el recorrido del árbol es en postorden, y mientras se visitan los nodos del árbol, se va también visitando cada una de las aristas (cláusulas) de la gráfica de restricciones, al mismo tiempo que se van aplicando las recurrencias (1) y (2). Este último proceso nos genera del orden de ( + ) operaciones básicas.…”
Section: Complejidad En Tiempo Del Algoritmounclassified
“…# ( ) pertenece a la clase # -Completo aún cuando este en 2-FNC, este último denotado como #2 [1]. Aunque el problema #2 es # -Completo, existen instancias que se pueden resolver en tiempo polinomial [2]. Por ejemplo, si la gráfica que representa la fórmula es acíclica, entonces #2 puede resolverse en tiempo polinomial.…”
Section: Introductionunclassified