Oil refineries are facing many challenges, including heavier crude oils, increased fuel quality standards, and a need to reduce air pollution emissions. Global society is stepping on the road to zero-sulfur fuel, with only differences in the starting point of sulfur level and rate reduction of sulfur content between different countries. Hydrodesulfurization (HDS) is the most common technology used by refineries to remove sulfur from intermediate streams. However, HDS has several disadvantages, in that it is energy intensive, costly to install and to operate, and does not work well on refractory organosulfur compounds. Recent research has therefore focused on improving HDS catalysts and processes and also on the development of alternative technologies. Among the new technologies one possible approach is biocatalytic desulfurization (BDS). The advantage of BDS is that it can be operated in conditions that require less energy and hydrogen. BDS operates at ambient temperature and pressure with high selectivity, resulting in decreased energy costs, low emission, and no generation of undesirable side products. Over the last two decades several research groups have attempted to isolate bacteria capable of efficient desulfurization of oil fractions. This review examines the developments in our knowledge of the application of bacteria in BDS processes, assesses the technical viability of this technology and examines its future challenges.
IntroductionBiotechnology is now accepted as an attractive means of improving the efficiency of many industrial processes, and resolving serious environmental problems. One of the reasons for this is the extraordinary metabolic capability that exists within the bacterial world. Microbial enzymes are capable of biotransforming a wide range of compounds, and the worldwide increase in attention being paid to this concept can be attributed to several factors, including the presence of a wide variety of catabolic enzymes and the ability of many microbial enzymes to transform a broad range of unnatural compounds (xenobiotics) as well as natural compounds. Biotransformation processes have several advantages compared with chemical processes, including: (i) microbial enzyme reactions are often more selective; (ii) biotransformation processes are often more energy-efficient; (iii) microbial enzymes are active under mild conditions; and (iv) microbial enzymes are environment-friendly biocatalysts. Although many biotransformation processes have been described, only a few of these have been used as part of an industrial process. Many opportunities remain in this area.Petroleum biotechnology is based on biotransformation processes. Petroleum microbiology research is advancing on many fronts, spurred on most recently by new knowledge of cellular structure and function gained through molecular and protein engineering techniques, combined with more conventional microbial methods. Current applied research on petroleum microbiology encompasses oil spill remediation, fermenter-and wetland-based hydrocarbon...