2017
DOI: 10.1590/0102-7786324006
|View full text |Cite
|
Sign up to set email alerts
|

Model for Multiple Imputation to Estimate Daily Rainfall Data and Filling of Faults

Abstract: Modeling by multiple enchained imputation is an area of growing importance. However, its models and methods are frequently developed for specific applications. In this study the model for multiple imputation was used to estimate daily rainfall data. Daily precipitation records from several meteorological stations were used, obtained from system AGRITEMPO for two homogenous climatic zones. Modelo de Imputação Múltipla para Estimar Dados de Precipitação Diária e Preenchimento de FalhasResumo A modelagem por imp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
14
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 25 publications
(20 citation statements)
references
References 26 publications
0
14
0
1
Order By: Relevance
“…This is also the time when highest productivity is experienced in the northern Indian Ocean. The impact of missing data on statistical inference is potentially significant and are therefore prone to biased estimates 69 ; but filling the data-gaps is equally challenging. This paper presents a method to fill gaps in remote sensed data by using sophisticated statistical tools of moderate complexity.…”
Section: Discussionmentioning
confidence: 99%
“…This is also the time when highest productivity is experienced in the northern Indian Ocean. The impact of missing data on statistical inference is potentially significant and are therefore prone to biased estimates 69 ; but filling the data-gaps is equally challenging. This paper presents a method to fill gaps in remote sensed data by using sophisticated statistical tools of moderate complexity.…”
Section: Discussionmentioning
confidence: 99%
“…Missing data were estimated using the multiple imputation method, which simulates missing data multiple times. The multiple imputation method has been successfully applied to infill hydro-meteorological data in different studies (de Carvalho et al 2017;Sattari et al 2017;Ekeu-wei et al 2018). In the current study, the statistical XLSTAT software was used to generate multiple imputations, whereby five imputations were applied as suggested by Schafer & Olsen (1998).…”
Section: Data Quality Control and Statistical Analysismentioning
confidence: 99%
“…É possível ainda que se realizem projetos de redirecionamento de recursos hídricos (abastecimento de água), levando em consideração a pouca homogeneidade na distribuição de chuvas em escala global ou mesmo em escala regional, como é o caso do sertão nordestino brasileiro (a transposição do rio São Francisco é um exemplo de tentativa de redirecionamento). Dessa forma, é necessário que o registro convertido em séries históricas apresente uma margem de erro aceitável e uma continuidade, originando uma base de dados consistente de modo a permitir o adequado tratamento estatístico das informações e o emprego dos resultados nos estudos de viabilidade de obras (Carvalho et al, 2017;Farias, Santos & Silva, 2018).…”
Section: Introductionunclassified