All-optical spin switching is a potential trailblazer for information storage
and communication at an unprecedented fast rate and free of magnetic fields.
However, the current wisdom is largely based on semiempirical models of
effective magnetic fields and heat pulses, so it is difficult to provide
high-speed design protocols for actual devices. Here, we carry out a massively
parallel first-principles and model calculation for thirteen spin systems and
magnetic layers, free of any effective field, to establish a simpler and
alternative paradigm of laser-induced ultrafast spin reversal and to point out
a path to a full-integrated photospintronic device. It is the interplay of the
optical selection rule and sublattice spin orderings that underlines seemingly
irreconcilable helicity-dependent/independent switchings. Using realistic
experimental parameters, we predict that strong ferrimagnets, in particular,
Laves phase C15 rare-earth alloys, meet the telecommunication energy
requirement of 10 fJ, thus allowing a cost-effective subpicosecond laser to
switch spin in the GHz region.Comment: 23 pages, 6 figures and one tabl