Underground coal gasification (UCG) technology converts deep coal resources into synthesis gas for use in the production of electricity, fuels and chemicals. This study provides an overview of the systematic methods of the in situ coal gasification process. Furthermore, the model of the porous structure of coal has been presented and the gas movement taking place in the carbon matrix—which is part of the bed—has been described. The experimental tests were carried out with the use of air forced through the nozzle in the form of a gas stream spreading in many directions in a porous bed under bubbling conditions. The gas flow resistance coefficient was determined as a function of the Reynolds number in relation to the diameter of the gas flow nozzle. The proprietary calculation model was compared to the models of many researchers, indicating a characteristic trend of a decrease in the gas flow resistance coefficient with an increase in Reynolds number. The novelty of the study is the determination of the permeability characteristics of char (carbonizate) in situ in relation to melted waste rock in situ, taking into account the tortuosity and gas permeability factors for an irregularly shaped solid.