ResumenLa finalidad de los diseños óptimos es determinar las condiciones experimentales adecuadas de tal forma que se pueda garantizar inferencias estadísticas lo más precisas posibles en términos de mínima varianza del vector de parámetros estimado. Esta teoría presupone el conocimiento de la función que relaciona las variables explicativas con la variable respuesta, en esta situación, con frecuencia, se obtienen diseños con tantos puntos de soporte como parámetros tiene el modelo propuesto en la investigación. Dado que los diseños con p−puntos de soporte asumen que la función del modelo es conocida, éstos pueden llegar a ser no tan óptimos en algunas situaciones prácticas, debido a que no permiten probar la bondad de ajuste del modelo asumido [1]. En este artículo se presenta una generalización de la metodología propuesta en [2] para aumentar el número de puntos en el criterio D-optimalidad. Se encuentra una expresión para la varianza de 1 M.Cs en Ciencias Estadística, syargumedog@unal.edu.co, Universidad Nacional de Colombia, Medellín, Colombia.