1997
DOI: 10.1007/978-1-4612-0703-0
|View full text |Cite
|
Sign up to set email alerts
|

Model-Oriented Design of Experiments

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
225
0
1

Year Published

2002
2002
2014
2014

Publication Types

Select...
4
4

Relationship

1
7

Authors

Journals

citations
Cited by 336 publications
(227 citation statements)
references
References 0 publications
1
225
0
1
Order By: Relevance
“…Si no hay lugar a confusión, en lo que sigue, se omite la dependencia de θ en f y en la matriz M . Para la construcción y verificación de que un diseño dado, ξ, es ϕ D -óptimo, en la literatura existe un teorema de equivalencia para el criterio D-Optimalidad [6]:…”
Section: Preliminares Y Definicionesunclassified
“…Si no hay lugar a confusión, en lo que sigue, se omite la dependencia de θ en f y en la matriz M . Para la construcción y verificación de que un diseño dado, ξ, es ϕ D -óptimo, en la literatura existe un teorema de equivalencia para el criterio D-Optimalidad [6]:…”
Section: Preliminares Y Definicionesunclassified
“…The design criteria are continuous functions of the Fisher information matrix F(θ 0 ), as for instance 1/ det F(θ 0 ) (D-optimal design) or λ max F −1 (θ 0 ) (E-optimal design) (compare [16,31,81]). In [7] the design criterion was introduced in order to define SE-optimal designs in the context of very general sampling strategies characterized by probability measures on the sampling interval.…”
Section: Model Validation and Parameter Estimationmentioning
confidence: 99%
“…As discussed in [6,11], there are situations where the design measures need to have (possibly, bounded) densities with respect to a fixed reference measure λ. In our framework this corresponds to an optimisation problem in the space M λ of measures absolutely continuous with respect λ or in the space…”
Section: Example 34 (D-optimal Designs With Bounded Densities)mentioning
confidence: 99%
“…This usually calls for major changes in proofs, since a new family of matrices has to be analysed at Step I of (1.3). Therefore, for each new type of constraint on µ both steps in (1.3) have to be reworked, for example, as in [6] and [11], where various types of constraint are analysed. Specific issues concerning optimal designs on general (not necessarily symmetric) experimental domains are considered in [19].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation