The focus of this paper is on modeling and control of Smart Thermal Grids (STGs) in which the uncertainties in the demand and/or supply are included. We solve the corresponding robust model predictive control (MPC) optimization problem using mixed-integer-linear programming techniques to provide a day-ahead prediction for the heat production in the grid. In an example, we compare the robust MPC approach with the robust optimal control approach, in which the day-ahead production plan is obtained by optimizing the objective function for entire day at once. There, we show that the robust MPC approach successfully keeps the supply-demand balance in the STG while satisfying the constraints of the production units in the presence of uncertainties in the heat demand. Moreover, we see that despite the longer computation time, the performance of the robust MPC controller is considerably better than the one of the robust optimal controller.