2017
DOI: 10.1007/978-981-10-7242-0_8
|View full text |Cite
|
Sign up to set email alerts
|

Model Selection in Feedforward Neural Networks for Forecasting Inflow and Outflow in Indonesia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 13 publications
0
1
0
3
Order By: Relevance
“…where 1 g , 2 g are the activation functions, w are the estimated parameters that connect the input to the hidden layer, v are the estimated parameters that connect the hidden to the output [22].…”
Section: Neural Networkmentioning
confidence: 99%
“…where 1 g , 2 g are the activation functions, w are the estimated parameters that connect the input to the hidden layer, v are the estimated parameters that connect the hidden to the output [22].…”
Section: Neural Networkmentioning
confidence: 99%
“…Dalam penelitian ini, model yang digunakan untuk proyeksi (forecast) total pembayaran non-tunai, yaitu ARIMA, ARIMAX, dan hybrid ARIMAX-ANN akan dibandingkan akurasinya. Untuk memperoleh ramalan ANN, dua pendekatan untuk menyeleksi jumlah variabel input turut dibandingkan, yaitu berdasarkan signifikansi lag residual Autocorrelation Function (ACF) dan regresi stepwise [14]. Di Indonesia, belum ditemukan penelitian serupa yang menggunakan stepwise untuk menyeleksi input.…”
Section: Pendahuluanunclassified
“…Artificial Neural Network (ANN) merupakan metode yang dikembangkan dengan konsep mereplika jaringan syaraf biologis ke dalam model matematis [14]. Salah satu model ANN yang digunakan untuk peramalan adalah feed-forward neural network (FFNN).…”
Section: Arimax-annunclassified
See 1 more Smart Citation
“…After obtaining data from each scenario in the first stage, the next step is to model the data from each scenario using ARIMAX and hybrid QRNN model. The study about procedure to choose input in Neural Network with application to currency inflow and outflow forecasting in Indonesia was done by Suhartono et al [19]. The RMSE and MdAE criteria are used to determine the best model for predicting data in each scenario.…”
Section: Simulation Studymentioning
confidence: 99%