This paper investigates the ability of a least-squares support vector machine (LSSVM) model to improve the accuracy of streamflow forecasting. Cross-validation and grid-search methods are used to automatically determine the LSSVM parameters in the forecasting process. To assess the effectiveness of this model, monthly streamflow records from two stations, Tg Tulang and Tg Rambutan of the Kinta River in Perak, Peninsular Malaysia, were used as case studies. The performance of the LSSVM model is compared with the conventional statistical autoregressive integrated moving average (ARIMA), the artificial neural network (ANN) and support vector machine (SVM) models using various statistical measures. The results of the comparison indicate that the LSSVM model is a useful tool and a promising new method for streamflow forecasting.
The arising air pollution has addressed much attention globally due to its detrimental effects on human health and environment. As an early warning system for air quality control and management, it is important to provide precise information about the future concentrations in pollutants. We present here a time series model in predicting the Air Pollution Index (API) from three different stations; industrial, residential, and sub-urban areas between 2000 and 2009. In this paper, the Box-Jenkins approach of seasonal autoregressive integrated moving average (ARIMA), artificial neural network (ANN), and three models of fuzzy time series (FTS) have been compared by using the mean absolute percentage error, mean absolute error, mean square error, and root mean square error. Although all the methods were used as operational tools, the ANN seemed more accurate in forecasting API. The results showed that FTS (i.e. Chen's, Yu's, and Cheng's) performed inconsistent results since the conventional methods of ARIMA outperformed the performance of FTS. However, consistent results were achieved as the ANNs gave the smallest forecasting error compared to FTS and ARIMA.
Penelitian ini bertujuan untuk mengembangkan media pembelajaran mobile learning untuk smartphone pada materi sifat koligatif larutan. Penelitian ini menggunakan pendekatan penelitian dan pengembangan model Borg & Gall yang telah diadaptasi. Tahapan penelitian terdiri atas analisis kebutuhan, pengembangan media, dan uji coba media. Hasil analisis kebutuhan menunjukan bahwa 91,7% siswa merasa perlu adanya pengembangan media pembelajaran mobile learning pada materi sifat koligatif larutan. Media yang dikembangkan ini berupa aplikasi khusus unuk android dengan ukuran 49,49MB. Hasil uji coba oleh ahli media diperoleh persentase kelayakan sebesar 87,2%. Hasil uji coba oleh ahli materi diperoleh persentase kelayakan sebesar 88%. Hasil uji coba kepada guru kimia diperoleh sebesar 94%. Hasil uji coba kepada siswa skala kecil diperoleh sebesar 79%. Hasil uji coba kepada siswa skala besar diperoleh sebesar 80%. Dari keseluruhan uji tersebut dapat disimpulkan bahwa Media Pembelajaran Mobile Learning Berbasis Android Pada Materi Sifat Koligatif Larutan telah sesuai dengan kebutuhan siswa dan guru dengan hasil interpretasi baik. Kata Kunci: Media Pembelajaran Kimia, Mobile Learning, Android, Sifat Koligatif Larutan
Problem statement: Most of Seasonal Autoregressive Integrated Moving Average (SARIMA) models that used for forecasting seasonal time series are multiplicative SARIMA models. These models assume that there is a significant parameter as a result of multiplication between nonseasonal and seasonal parameters without testing by certain statistical test. Moreover, most popular statistical software such as MINITAB and SPSS only has facility to fit a multiplicative model. The aim of this research is to propose a new procedure for indentifying the most appropriate order of SARIMA model whether it involves subset, multiplicative or additive order. In particular, the study examined whether a multiplicative parameter existed in the SARIMA model. Approach: Theoretical derivation about Autocorrelation (ACF) and Partial Autocorrelation (PACF) functions from subset, multiplicative and additive SARIMA model was firstly discussed and then R program was used to create the graphics of these theoretical ACF and PACF. Then, two monthly datasets were used as case studies, i.e. the international airline passenger data and series about the number of tourist arrivals to Bali, Indonesia. The model identification step to determine the order of ARIMA model was done by using MINITAB program and the model estimation step used SAS program to test whether the model consisted of subset, multiplicative or additive order. Results: The theoretical ACF and PACF showed that subset, multiplicative and additive SARIMA models have different patterns, especially at the lag as a result of multiplication between non-seasonal and seasonal lags. Modeling of the airline data yielded a subset SARIMA model as the best model, whereas an additive SARIMA model is the best model for forecasting the number of tourist arrivals to Bali. Conclusion: Both of case studies showed that a multiplicative SARIMA model was not the best model for forecasting these data. The comparison evaluation showed that subset and additive SARIMA models gave more accurate forecasted values at out-sample datasets than multiplicative SARIMA model for airline and tourist arrivals datasets respectively. This study is valuable contribution to the Box-Jenkins procedure particularly at the model identification and estimation steps in SARIMA model. Further work involving multiple seasonal ARIMA models, such as short term load data forecasting in certain countries, may provide further insights regarding the subset, multiplicative or additive orders
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.