Dynamic Linear Models With R 2009
DOI: 10.1007/b135794_3
|View full text |Cite
|
Sign up to set email alerts
|

Model specification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2010
2010
2023
2023

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…where r is the intrinsic productivity state in years t and t +1, δ is the drift and is the stochastic annual productivity forcing with distribution that governs the variability in productivity from year to year. We formulate the non-stationary Graham–Schaefer as a hierarchical Bayesian model 20 21 to reconstruct characteristic productivity variation for all depleted stocks and estimate the key parameter for each stock, which quantitatively characterizes the response to biologically and environmentally driven productivity forcing. We fit the Bayesian model via Markov Chain Monte Carlo (MCMC) using the software Stan 22 .…”
Section: Resultsmentioning
confidence: 99%
“…where r is the intrinsic productivity state in years t and t +1, δ is the drift and is the stochastic annual productivity forcing with distribution that governs the variability in productivity from year to year. We formulate the non-stationary Graham–Schaefer as a hierarchical Bayesian model 20 21 to reconstruct characteristic productivity variation for all depleted stocks and estimate the key parameter for each stock, which quantitatively characterizes the response to biologically and environmentally driven productivity forcing. We fit the Bayesian model via Markov Chain Monte Carlo (MCMC) using the software Stan 22 .…”
Section: Resultsmentioning
confidence: 99%