The speed and direction of a missile shifts sharply in the dive phase, making the azimuth frequency modulation (FM) rate change with the azimuthal position, leading to azimuth ambiguities and image distortion. To solve this problem, a modified nonlinear chirp scaling (NLCS) algorithm was adopted to compensate for the azimuth FM rate. First, the geometric configuration and echo signal model of the spaceborne missile bistatic synthetic aperture radar (SAR) were built, and then the Doppler frequency correction was performed, and the 2-D spectrum of the signal was derived by the method of series reversion. Next, range migration correction and range compression were finished in the 2-D frequency domain. Following this, a modified NLCS algorithm was proposed to solve the space variance of Doppler phase problem. After compensating for the azimuth FM rate, the azimuth compression focusing was completed and the imaging result was obtained. Finally, by comparing the calculation amount, imaging effect, and performance index with the traditional NLCS algorithm, it can be concluded that the algorithm reduced the calculation amount by 1.0128 × 108 floating point operations per second (FLOPs) compared with the traditional NLCS algorithm, and the azimuth focusing effect of the edge point was greatly improved. Its resolution, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) were improved by 0.87 m, 3.32 dB, and 1.79 dB, respectively, which proved the effectiveness and feasibility of this method.