We develop time-domain approach for simulation of microstrip-connected extremely-high frequency (EHF) solid-state oscillators for close-range radars, including ultrashort-pulse, ultrawide-band (UWB), and noise radars. The circuits utilize high-speed GaN-based active devices such as Gunn diodes (GD) and resonant-tunneling diodes (RTD) capable of operating with enhanced power output. Microstrip interconnects produce time-delay coupling in the system that can create a complicated nonlinear dynamics of oscillations. The circuits can generate self-emerging trains of ultra-short EHF pulses emitted into an open microstrip section for further radiation. The arrays of active devices connected in either parallel (star-case) or series (ladder-case) type of circuits were simulated. Options for generation of chaotic signals in this kind of systems have been considered. An infrared-microwave (IR-EHF) oscillator linked to the resonant antenna was simulated. The oscillator consists of an RTD-driven laser diode (LD) joint to the EHF resonant antenna with a short piece of microstrip section. The oscillator can generate both the EHF pulse radiation and the EHF modulated IR pulses. Both kinds of radiation can be emitted in the free space as the trains of correlated IR-EHF radar pulses. Arrays of oscillators can be used for enhancing the power output of the system.