2022 IEEE 10th Conference on Systems, Process &Amp; Control (ICSPC) 2022
DOI: 10.1109/icspc55597.2022.10001804
|View full text |Cite
|
Sign up to set email alerts
|

Modeling and Dynamic performance of Energy Storage -Rotary Series Elastic Actuator for Lumbar Support Exoskeleton

Abstract: The assistive exoskeletons are rapidly being developed to collaborate with humans, and the demand for the safety of human-robot interaction has become more crucial. Series elastic actuators (SEAs) have recently been developed in various fields for a variety of possible advantages, such as providing a safe human-robot interaction, reducing the impacts' effects, and increasing energy efficiency. However, achieving the good dynamic performances of SEAs is still challenging, especially fulfilling the high bandwidt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 14 publications
0
2
0
Order By: Relevance
“…However, wearable robots would be more effective if they were more compact and lightweight than current SEA designs, which are bulky and heavy. To address this, a novel energy storage-rotary series elastic actuator (ES-RSEA) has been developed in our previous publication [13,14] to assist with squat lifting tasks. The compact and modular design of the ES-RSEA leverages the biomechanics of the human squat strategy to utilize the kinetic energy of limbs for semi-squat lifting tasks.…”
Section: Introductionmentioning
confidence: 99%
“…However, wearable robots would be more effective if they were more compact and lightweight than current SEA designs, which are bulky and heavy. To address this, a novel energy storage-rotary series elastic actuator (ES-RSEA) has been developed in our previous publication [13,14] to assist with squat lifting tasks. The compact and modular design of the ES-RSEA leverages the biomechanics of the human squat strategy to utilize the kinetic energy of limbs for semi-squat lifting tasks.…”
Section: Introductionmentioning
confidence: 99%
“…However, wearable robots would be more effective if they were more compact and lightweight than current SEA designs, which are bulky and heavy. To address this, a novel energy storage-rotary series elastic actuator (ES-RSEA) has been developed, as detailed in our previous publication [ 13 , 14 ], to assist with squat lifting tasks. The compact and modular design of the ES-RSEA leverages the biomechanics of the human squat strategy to utilize the kinetic energy of limbs for semi-squat lifting tasks.…”
Section: Introductionmentioning
confidence: 99%