Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Automated plant species identification system could help botanists and layman in identifying plant species rapidly. Deep learning is robust for feature extraction as it is superior in providing deeper information of images. In this research, a new CNN-based method named D-Leaf was proposed. The leaf images were pre-processed and the features were extracted by using three different Convolutional Neural Network (CNN) models namely pre-trained AlexNet, fine-tuned AlexNet and D-Leaf. These features were then classified by using five machine learning techniques, namely, Support Vector Machine (SVM), Artificial Neural Network (ANN), k-Nearest-Neighbour (k-NN), Naïve-Bayes (NB) and CNN. A conventional morphometric method computed the morphological measurements based on the Sobel segmented veins was employed for benchmarking purposes. The D-Leaf model achieved a comparable testing accuracy of 94.88% as compared to AlexNet (93.26%) and fine-tuned AlexNet (95.54%) models. In addition, CNN models performed better than the traditional morphometric measurements (66.55%). The features extracted from the CNN are found to be fitted well with the ANN classifier. D-Leaf can be an effective automated system for plant species identification as shown by the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.