Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
An automated guided vehicle (AGV) is a mobile robot with remarkable industrial applicability for transporting materials within a manufacturing facility or a warehouse. AGV scheduling refers to the process of allocating AGVs to tasks, taking into account the cost and time of operations. Multiobjective scheduling is adopted in this study to acquire a more complex and combinatorial model in contrast with single objective practices. The model objectives are the makespan and number of AGVs minimization while considering the AGVs battery charge. A fuzzy hybrid GA-PSO (genetic algorithm -particle swarm optimization) algorithm was developed to optimize the model. Results have been compared with GA, PSO, and hybrid GA-PSO algorithms to explore the applicability of the algorithm developed. Model's feasibility and the algorithms' performance were investigated through a numerical example before and after the optimization. The model evaluation and validation was conducted through simulation via Flexsim software. The fuzzy hybrid GA-PSO surpassed the other methods, although obtaining less mean computational time was the only significant improvement over hybrid GA-PSO.
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including ''extremely preferred'', ''moderately preferred'', and ''weakly preferred''. In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.