A novel plasma source (HelixJet) for use in additive manufacturing (AM)/3D printing is proposed. The HelixJet is a capacitively coupled radio frequency plasma with a double‐helix electrode configuration that generates a surprisingly stable and homogeneous glow plasma at low flow rates of argon and its mixtures at atmospheric pressure. The HelixJet was tested on three polyamide powders usually used to produce parts by laser sintering, a powder‐based AM process, to form local deposits. The chemical composition of such plasma‐printed samples is compared with thermally produced and laser‐sintered samples with respect to differences in morphology that result from the different thermal cycles on several length scales. Plasma prints exhibit unique features attributable to the nonequilibrium chemistry and to the high‐speed heat exchange.