Urban hydrologyAppreciating the dynamics of the hydrological cycle in the urban domain requires consideration of both the natural water cycle and the manmade elements which interact with it, such as those for storage and conveyance (Barbosa, Fernandes & David 2012). Not only does this lead to more complex pathways through the cycle due to the increased number of elements involved, but creates challenges for data collection as often these manmade elements are owned by private companies, leading to uncertainties and difficulty in accessing information on channel (pipe) size and locations (Noh et al. 2016).In addition, the processes and storages of the natural water cycle are also altered in the urban domain, with potential for some being reduced (see Figure 1). For example, the increased impermeable surface area relative to an undeveloped parcel leads to reduced infiltration and evapotranspiration, with a resultant increase in surface runoff (Anim et al. 2019). Reduced infiltration into permeable, undeveloped land also leads to reduced groundwater level and less resilience of the land to prolonged dry periods.Management in the urban form usually results in attempts to control where the water is located, too, through the channelling of water into drains and pipes. This is then conveyed out of the populated area. Consequently, when the inflow is greater than the outflow (during intense and/ or persistent rainfall), problems are exacerbated as there is little storage capacity and water collects in these areas.As a result, the spatial and temporal scale of the subprocesses in the hydrological cycle are much smaller in