In this paper, parameters of the tuned mass dampers are optimized to improve the performance level of steel structures during earthquakes. In this regard, a six-story steel frame is modeled using a concentrated plasticity method. Then, the optimum parameters of the Tuned Mass Damper (TMD) are determined by minimizing the maximum drift ratio of the stories. The performance level of the structure is also forced to be located in a safety zone. The incremental dynamic analysis is used to analyze the structural behavior under the influence of the artificial, near- and far-field earthquakes. The results of the investigation clearly show that the optimization of the TMD parameters, based on minimizing the drift ratio, reduces the structural displacement, and improves the seismic behavior of the structure based on Federal Emergency Management Agency (FEMA-356). Moreover, the values of base shear have been decreased for all studied records with peak ground acceleration smaller or equal to 0.5 g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.